Since 1993 股票代码:837430 厚积薄发 持续创新
良时海绵磨料喷砂机设备 ACM型高效压送式喷砂机 KPBM型高效压送式喷砂机 环保吸送箱式喷砂机系列 多用途滚筒吸送箱式喷砂机 多工位吸送箱式喷砂机 定制专用型吸送箱式喷砂机 液体湿式箱式喷砂机 环保压送箱式喷砂机系列 多工位压送箱式喷砂机 定制专用型压送箱式喷砂机 锯片喷砂机 环保型边喷边吸喷砂机
环保压送箱式自动喷砂机 环保吸送箱式自动喷砂机 高科技行业专用自动喷砂机
喷丸室体与弹丸发生器 喷丸机器人/多轴机械臂 弹丸磨料回收及分选系统 数控喷丸机CNC电控系统 喷丸机丸料及压力控制系统 航空飞机工业数控喷丸机 汽车工业数控强化喷丸机 机车工业数控强力喷丸机 电力能源工业数控喷丸机 WPC精密喷丸表面处理
吊钩悬挂输送式抛丸机 型钢/钢管通过式抛丸机 钢板抛丸预处理线 履带式/转台式抛丸机
全自动机械回收式喷砂房 自动气力输送回收式喷砂房 集装箱自动喷砂房示范工程 喷砂房磨料回收筛选分离 喷砂房涂装房柔性升降大门 喷砂房工件输送/工作台车 喷砂房自动化电气控制系统 喷砂房滤筒除尘器设备 喷砂房布袋除尘器设备 文丘里湿式除尘器
热水器内胆喷砂生产线 钢管内壁自动喷砂生产线 显示器基板自动喷砂生产线 钛钼铝薄板自动喷砂生产线
LGPQ型高压无气喷涂机 LQPT型高压无气喷涂机 涂胶机与打胶机系列 高粘度双组份喷涂机 空气喷涂机系列 静电喷涂机/喷粉室 中小型干式喷漆室 湿式水帘喷漆室 自动涂装机/自动喷涂机
喷砂喷抛丸机器人 喷锌喷铝热喷涂机器人 喷粉涂装机器人 喷漆涂装机器人
电弧融射喷涂机/喷锌机 空冷微通道铝扁管喷锌线 自动热喷涂机/自动喷锌机
前处理系统设备 喷漆烘干生产线 喷粉烘干生产线 喷漆房烘干房系统 喷漆烘干两用房 喷砂房喷漆房系统 特氟龙涂装喷砂喷粉房/烘炉 风电设备喷砂房喷锌/喷漆房 船舶分段喷砂涂装房车间 VOC有机废气处理设备 燃油/燃气/电加热热风炉
工业搪瓷预处理技术及设备 热水器内胆涂搪技术及设备 换热元件搪瓷生产线
大型高效电/气遥控喷砂机 真空吸砂机/真空吸尘器 管道内壁喷砂器喷涂器 除湿机/暖风机/热风炉 后冷却器/移动式除尘器
压缩气源常见问题与总结
上海良时冷喷涂系统技术介绍
飞机零部件喷丸强化设备飞机零部件精细喷砂机飞机机翼数控喷丸成形设备飞机零部件机器人喷涂系统
船舶钢板抛丸预处理线船舶分段二次喷砂涂装房大型组合式喷吸砂机组焊缝清理喷砂机/吸砂机高效电/气遥控压送喷砂机吸砂机/除湿机/暖风机系列
变速箱齿轮数控强力喷丸机汽车A/B柱抛丸涂油生产线汽车铝轮毂自动喷砂机活塞/减震器自动涂装机轮毂模具烘干清洗喷涂设备汽车零部件抛丸清理生产线发动机曲轴/连杆喷丸机活塞件半自动喷砂机喷丸机刹车片粗化/车灯喷砂机
机车轮对清洗房/机车转向架喷砂房/喷漆烘干房齿轮/轮轴数控强力喷丸机压气机叶轮数控强力喷丸机机车车体喷砂房/喷烘房
桥梁钢结构喷砂涂装房焊缝清理边喷边吸喷砂机桥箱内壁清理喷砂机钢结构抛丸清理生产线
薄板钢板抛丸生产流水线冷藏箱机器人喷砂喷锌线集装箱喷砂喷漆涂装流水线液体集装罐喷砂房喷漆房承压设备及模块系统集成电梯导轨抛丸涂油生产线
工程机械环保喷砂房喷漆房
风电塔筒钢板抛丸预处理线风电塔筒喷砂房喷漆房风电轴承喷砂/喷锌/喷漆房太阳能发电硅片自动喷砂机核电部件喷丸小室超临界发电钢管内壁喷丸机风电增速机喷漆烘干生产线火电空冷微通道铝扁管喷锌风电变速箱齿轮强力喷丸机发电反应釜/缓冲罐/储罐
薄板钢板喷抛丸生产线重防腐喷砂/喷锌/喷涂设备管道内壁喷砂喷涂生产线焊缝清理边喷边吸喷砂机石化装备催化机真空抽料机采油注水管喷砂清理生产线石油化工承压设备系统集成
大型铸件喷砂喷涂生产线大铸件喷砂房喷漆房烘干房泵阀喷漆烘干生产流水线铸件内腔流道喷砂清理设备刀具喷砂/丸清理钝化设备
铝/钛合金板自动喷砂设备电气元件环保箱式喷砂机塑胶件自动喷涂生产线
植入人体钛合金数控喷丸机注射针粗化自动喷砂机医疗器械精控箱式喷砂机
印刷机械喷漆烘干一体房
水箱喷砂房特氟龙喷涂房电机部件再制造喷砂清理机
aibluebox智慧盒—人工智能盒
可持续发展与ESG上海良时节能减排项目良时风能项目介绍良时储能项目介绍良时永磁项目介绍良时循环水节能项目介绍良时钢材深加工轻量化构件 技术和市场前景良时智慧气源站项目介绍
您所在的位置:首页 > 新闻动态 > 行业新闻
涂装虚拟仿真技术是现代数字制造技术与计算机仿真技术相结合的产物,它的出现给涂装工艺注入了新的活力。由于产品设计对于涂装工艺能力和车型产品性能均有较大的影响,因此如果能够在前期通过虚拟仿真技术对涂装能力和过程进行分析,将大幅提高产品性能,减少产品设计缺陷,减少实车验证过程中的问题数量及产品开发后期的工作量。
涂装工艺虚拟仿真技术涵盖了涂装全序的工艺虚拟仿真分析,以产品全生命周期的相关数据为基础,根据虚拟制造的原理,在计算机虚拟环境中对整个生产过程中进行仿真、评估和优化。
1.通过性仿真分析
涂装车间需同时满足多种车型的的生产要求,即多车型的柔性化生产,尽管涂装生产线在设计时是按照柔性化生产设计的,但由于车型设计风格的不断发展、车型款式的不断更新以及车型热点的不断转换,新车型在尺寸、质量和定位孔等车身数据上的差异越来越大,需要新车型在现有涂装线投产前进行通过性分析工作。
三维工厂布局软件能对新车型在涂装车间的通过性进行全面的分析和评估,是数字化虚拟工厂设计、分析和仿真的工具,它能迅速简便地建立、分析和展示可视化的工厂三维立体模型,使新车型的三维数模在虚拟工厂中进行非标设备通过性分析和机械化设备通过性分析。
软件能模拟白车身在各个室体内的运动状态并进行动态分析,分析该车身在通过各个室体时是否存在干涉现象,以确定车身在各个室体的通过性能力。软件能对滑撬、吊具和台车输送设备等进行模拟装载分析,分析输送系统与车身数模是否干涉、是否满足安全距离等,以确定车身是否满足各工位机械化设备的通过性要求。
2.气泡仿真分析
电泳涂装是将整个白车身浸入在电泳槽中,由于车身设计结构和设备的局限性,白车身入槽后腔体内的气体不能完全排净,电泳后大部分车型都存在电泳气室的问题。采用RoDip或VarioShuttle等机运系统可以解决气室问题,但其成本较高,老工厂无法进行实施,因此通过前期仿真发现积气位置是较为理想的解决方案。
气泡仿真软件能计算出电泳过程中的气室位置,对电泳过程中的排气能力进行全面评估。在产品设计阶段,将车身数模进行网格化划分,输入车身的入槽角度、运行轨迹和出槽角度等信息,通过软件的分析计算,得到各个时间点腔体内气泡的状态、整个电泳过程内气泡的流动路径和存在位置。
通过对气室位置的精确仿真,可以在产品设计过程中提前发现气室位置,通过在气室位置开孔或调节形面等办法解决气室问题,并不断进行优化,避免在项目后期依靠辅具工装调节或设备的更改解决气室问题,既缩短了项目的调试周期,又节省了设备变更所产生的费用。
3.烘烤仿真分析
汽车制造属于大批量流水线制造,快节奏的涂装生产需采用烘干炉进行烘干,烘干的目的是通过加热使涂装过程中附着在车身上的涂膜、密封胶等能够迅速固化,提高生产效率。
在新车型设计的过程中,涂装工艺部门往往不能准确地评估新车型的烘干能力,需要在有试制样车后,在生产调试阶段依靠炉温仪测量车身表面在烘干炉中温度的变化情况,进行验证工作。这种工作模式验证时间靠后,验证周期较长,而且无法准确了解车身腔体内的烘烤温度变化情况。
烘烤仿真软件能模拟车身上漆膜和胶黏剂的烘干过程,模拟墙壁上喷管向车身喷射热空气的影响,能对新车型烘干能力进行准确的评估。该软件需通过网格模块进行车身网格划分,输入车身、密封胶和漆膜热传导系数,设置烘干炉尺寸和喷头位置等设备信息,通过计算模块进行仿真计算,得到车身任意位置的温度随时间变化的关系。在产品设计阶段,通过对烘烤仿真软件的应用,可以对新车型烘干能力进行全面评估,提前解决了后续验证过程中的问题,该仿真软件同时能对生产线进行优化,通过对生产线分析模拟,调节加热空气喷射角度,提高生产线能量的利用率。
4.电泳仿真分析
电泳工序是汽车车身涂装的第一道环节,也可以说是整个车身涂装的基础,其质量的好坏直接影响车身的抗腐蚀性能及漆膜的装饰效果。
电泳过程中因电磁屏蔽原因,在多层板包合搭接形成的内腔里,电泳效果往往不理想,需通过增开电泳孔来提升电泳效果,继而提升车身的防腐能力。由于车身设计还需考虑噪声、强度和振动等性能的要求,电泳孔开孔位置限制较多,电泳能力的评估工作以往主要以个人经验为主并辅以试制纠错法协助,所有的开孔方案需在项目后期的实车拆解阶段进行验证,存在验证周期长、变更费用高的问题。
电泳仿真软件能计算车身上的电流密度分布、电势分布和漆膜厚度分布,对新车型电泳能力进行全面评估。电泳仿真软件采用有限元方法进行计算分析,分为数据准备、模型前处理、分析计算和结果后处理四大部分。软件可以在设计阶段对电泳的可行性进行高精度的定量计算,可以精确地得到产品在不同时刻的电流密度分布、电势分布和漆膜厚度分布,进而评估电泳的可行性。软件同时能对开孔方案进行不断验证和优化,直到得到最优的设计变更方案,为车身电泳能力的提升提供了精确的指导和快速的验证。
5.人机工程仿真分析
涂装密封胶使车身具有良好的水密封性、机械密封性、防锈性和耐久性。电泳无法处理到的钣金搭接的接缝、易被腐蚀的零件轮廓边、易积水位置的连接处以及易透气的连接处等部位需要涂密封胶。
密封胶的操作性评估是涂装同步工程的重点,以往主要根据个人经验进行该项评估,部分问题需等到实车验证阶段才能对各种应对方案进行验证,存在验证周期长、评估不够全面等问题。
人机工程软件能对生产线的涂胶情况进行全过程模拟,对密封胶操作进行全面、准确的评估。人机工程软件需对生产线进行建模,规定生产线运动轨迹,定义人体的动作,最终得到人机工程整体评价,判断涂胶操作的可达性、可视性并进行工时的统计。人机工程软件能在产品设计阶段对密封胶的操作性进行全面评估,提高了评估的准确性和全面性,减少了项目后期生产调试过程中的大部分问题。
6.机器人离线编程仿真
随着现代汽车工业的迅速发展,汽车型号迅速变化,车身设计不断调整,为适应这种频繁变化的生产要求,涂装车间的涂胶机器人和喷涂机器人应运而生,被大规模使用。
机器人的作用是控制喷枪,使之在喷涂过程中与喷涂表面保持正确的角度和恒定的距离,为了实现这一任务,工程师需要给机器人输入特定的喷枪移动轨迹,定义在整个喷涂过程中机器人的各种动作。以往喷漆机器人轨迹调试都采用线上(生产线上)示教编程模式,只能在项目后期有实车后才能进行调试与编程,这种工作形式存在调试时间靠后且调试周期较长等问题。
离线编程仿真软件以车身三维数模为基础,能快速地进行机器人工作单元的建立、仿真与验证,软件使用图形化编程、编辑和调试的机器人系统来创建机器人的运行轨迹。离线编程软件能在产品设计过程中进行机器人的轨迹调试工作,不需要生产线停机配合就可以对机器人的喷涂轨迹进行规划和编程,在不影响生产且足够安全的情况下,能不断地优化现有喷涂轨迹和机器人程序,大幅提前了轨迹调试时间点,缩短了项目的调试周期,提高了喷涂质量并节省了大量调试用车。
7.喷漆仿真分析
漆膜厚度是衡量自动喷漆效果的重要指标之一,漆膜过厚造成喷涂材料的浪费,且漆膜表面容易结块脱落,漆膜过薄则不足以遮盖产品的底漆颜色,无法形成良好的产品外观,漆膜厚度不均,又会形成不同的漆膜缺陷。
漆膜的厚度与喷漆过程中的很多因素有关,如喷头的运动速度、喷头的流量以及喷头与车身表面的距离等,所以漆膜厚度的调试工作复杂繁琐同时又是涂装工艺的重中之重。以往喷漆能力的调试需要在线上进行,需要消耗大量调试样车,调试后的样车只能做报废处理,造成了能源、资源和成本的浪费,这种工作模式调试时间靠后、影响生产线生产且调试周期较长。
喷漆膜厚仿真软件能快速、准确地模拟出白车身漆层的厚度,对喷漆质量、传输速率和污染进行准确的评估。软件需对生产线进行建模,设定好机器人喷涂轨迹、工艺参数和环境参数等一系列条件,导入产品数模,通过仿真计算,就能得到车身漆膜厚度的分布结果。通过对喷漆仿真软件的应用,在车型设计阶段,与设计部门协同工作,提前进行喷漆能力的评估,节省了大量调试样车,并对漆膜均匀覆盖和喷涂轨迹的优化提供了有效的参考。
随着计算机技术的不断发展,虚拟仿真技术在新车型开发过程中扮演着越来越重要的作用。作为产品设计和产品制造之间的桥梁,在产品设计阶段,通过仿真验证,工艺部门与设计部门实现同步工作,参与产品的设计过程,提出专业的意见进行产品更改,使设计到生产制造之间的不确定性降低,使生产制造过程在数字空间中得以检验,减少了项目后期的更改,避免了时间和成本的浪费,缩短了从设计到生产的转化时间。
上海良时智能始终跟进表面处理涂装行业各种技术的进步发展,认真研究相关工艺与设备并适时应用于具体工程产品与系统化方案,不断满足各行业客户日益变化的对表面处理实际需求。
沪公网安备 31012002002175号
打开微信,点击右上角的"+",选择"扫一扫"功能, 对准下方二维码即可。